
T h e I n t e r n e t P r o t o c o l J o u r n a l
2 3

Trends in Viruses and Worms
by Thomas M. Chen, Southern Methodist University

he modern computer virus was conceived and demonstrated by
Fred Cohen in 1983. Like biological viruses, computer viruses
reproduce by attaching to a normal program or document and

taking over control of the execution of that program to infect other
programs. Early viruses could spread slowly mostly by floppies (such as
the 1986 Brain virus), but the Internet has made it much easier for
viruses to move among computers and spread rapidly. Networks have
created a fertile environment for worms, which are related to viruses in
their ability to self-replicate but are not attached to other programs.
Worms are particularly worrisome as standalone automated programs
designed to exploit the network to seek out vulnerable computers. The
term worm was originated by John Shoch and Jon Hupp during their
experiments on mobile software at Xerox PARC in 1979, inspired by
the network-based tapeworm monster in John Brunner’s novel, The
Shockwave Rider[1]. Shoch and Hupp thought of worms as multi-
segmented programs distributed across networked computers.

The Internet increases the vulnerability of all interconnected machines
by making it easier for malicious programs to travel between computers
by themselves. Recent virus and worm outbreaks, such as the Blaster
worm in August 2003 and the SQL Sapphire/Slammer worm in January
2003, have demonstrated that networked computers continue to be
vulnerable to new attacks despite the widespread deployment of
antivirus software and firewalls. Indeed, a review of the history of
viruses and worms shows that they have continually grown in
sophistication over the years. This article highlights a series of
significant past innovations in virus and worm technology. The purpose
is to show that viruses and worms continue to pose a major risk today
and most likely into the future as their creators persist in seeking ways
to exploit security weaknesses in networked systems.

Stealth
The earliest viruses attempted to hide evidence of their presence, a trend
that continues to today. The 1986 DOS-based Brain virus hid itself in
memory by simulating all of the DOS system calls that normally detect
viruses, causing them to return information that gave the appearance
that the virus was not there.

The 2001 Lion worm installed a rootkit called t0rn, which is designed
to make the actions of the worm harder to detect through numerous
system modifications to deceive syslogd from properly capturing sys-
tem events (syslogd is often used to detect worm activity)[2]. More
recently, viruses and worms have attempted to hide by actively attack-
ing antivirus software on the infected computer (refer to the section
“Armoring”).

T

Viruses and Worms: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 4

Social Engineering
The 1987 Christma Exec virus was an early example of social engineer-
ing, spreading by e-mail among IBM mainframes. An arriving message
tricks the user into executing the virus by promising to draw a Christ-
mas tree graphic. The virus does produce a Christmas card graphic on
the computer display (drawn using a scripting language called Rexx)
but sends a copy of itself in the user’s name to that user’s list of outgo-
ing mail recipients. The recipients believe the e-mail is from the user, so
they are more likely to open the e-mail.

Social engineering continues to be common practice in today’s viruses
and worms, particularly those spread by e-mail. In January 1999, the
Happy99/Ska worm/Trojan horse hybrid spread by e-mail with an at-
tachment called Happy99.exe [3]. When the attachment was executed, it
displayed fireworks on the screen to commemorate New Year’s Day,
but secretly modified the WSOCK32.DLL file (the main Windows file for
Internet communications) with a Trojan horse program that allowed
the worm to insert itself into the Internet communications process. Ev-
ery e-mail sent by the user generated a second copy without any text
but carried the worm to the same recipients.

The 1999 PrettyPark worm propagated as an e-mail attachment called
Pretty Park.exe . The attachment is not explained, but it bears the
icon of a character from the television show, South Park. If executed, it
installs itself into the Windows System folder and modifies the Registry
to ensure that it runs whenever any .EXE program is executed. In
addition, the worm e-mails itself to addresses found in the Windows
Address Book. It also mails some private system data and passwords to
certain Internet Relay Chat (IRC) servers. Reportedly, the worm also
installs a backdoor to allow a remote machine to create and remove
directories, and send, receive, and execute files.

In February 2001, the Anna Kournikova virus demonstrated social
engineering again, pretending to carry a JPG picture of the tennis
player. If executed, the virus e-mails a copy of itself to all addresses in
the Outlook address book.

In March 2002, the Gibe worm spread as an attachment in an e-mail
disguised as a Microsoft security bulletin and patch. The text claimed
that the attachment was a Microsoft security patch for Outlook and
Internet Explorer. If the attachment is executed, it displays dialog boxes
that appear to be patching the system, but a backdoor is secretly
installed on the system.

Macro Viruses
The Concept virus was the first macro virus, written for Word for
Windows 95. The vast majority of macro viruses are targeted to
Microsoft Office documents that save macro code within the body of
documents. Macro viruses have the advantages of being easy to write
and independent of computing platform. However, macro viruses are
no longer widespread after people have become more cautious about
using the Office macro feature.

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 5

Mass E-Mailers
In March 1999, the Melissa macro virus spread quickly to 100,000
hosts around the world in three days, setting a new record and shutting
down e-mail for many organizations using Microsoft Exchange
Server[4]. It began as a newsgroup posting promising account names and
passwords for erotic Web sites. However, the downloaded Word
document actually contained a macro that used the functions of
Microsoft Word and the Microsoft Outlook e-mail program to
propagate. Up to that time, it was widely believed that a computer
could not become infected with a virus just by opening e-mail. When
the macro is executed in Word, it first checks whether the installed
version of Word is infectable. If it is, it reduces the security setting on
Word to prevent it from displaying any warnings about macro content.
Next, the virus looks for a certain Registry key containing the word
“Kwyjibo” (apparently from an episode of the television show, The
Simpsons). In the absence of this key, the virus launches Outlook and
sends itself to 50 recipients found in the address book. Additionally, it
infects the Word NORMAL.DOT template using the Microsoft Visual
Basic for Applications (VBA) macro auto-execute feature. Any Word
document saved from the template would carry the virus.

In June 1999, the ExploreZip worm appeared to be a WinZip file
attached to e-mail but was not really a zipped file[5]. If executed, it
appears to display an error message, but the worm secretly copies itself
into the Windows Systems directory or loads itself into the Registry. It
sends itself via e-mail using Outlook or Exchange to recipients found in
unread messages in the inbox. It monitors all incoming messages and
replies to the sender with a copy of itself.

In May 2000, the fast-spreading Love Letter worm demonstrated a
social engineering attack[6]. It propagated as an e-mail message with the
subject “I love you” and text that encourages the recipient to read the
attachment. The attachment is a Visual Basic script that could be
executed with Windows Script Host (present if the computer has
Windows 98, Windows 2000, Internet Explorer 5, or Outlook 5). Upon
execution, the worm installs copies of itself into the Windows System
directory and modifies the Registry to ensure that the files are run when
the computer starts up. The worm also infects various types of files (for
example, .VBS , .JPG , .MP3, etc.) on local drives and networked shared
directories. If Outlook is installed, the worm e-mails copies of itself to
addresses found in the address book. In addition, the worm makes a
connection to IRC and sends a copy of itself to anyone who joins the
IRC channel. The worm has a password-stealing feature that changes
the startup URL in Internet Explorer to a Website in Asia. The Website
downloads a Trojan horse designed to collect various passwords from
the computer.

In 2002, 90 percent of the known viruses were mass e-mailers. Two of
the most prevalent ones, Bugbear and Klez, began a trend of carrying
their own Simple Mail Transfer Protocol (SMTP) engines. Although e-
mail continues to be the most common infection vector, recent worms
have been exploring new vectors (see the section “New Infection
Vectors”).

Viruses and Worms: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 6

In addition, mail servers are becoming more powerful in their
capabilities to detect and filter malicious code. For these reasons, mass
e-mailing may decline as an infection vector for future viruses.

Polymorphism
Polymorphism is based on the simpler idea of encryption, which makes
a virus harder to detect by antivirus software scanning for a unique vi-
rus signature (byte pattern). Encryption attempts to hide a recognizable
signature by scrambling the virus body. To be executable, the en-
crypted virus is prepended with a decryption routine and encryption
key. However, encryption is not effective because the decryption rou-
tine remains the same from generation to generation, although the key
can change, scrambling the virus body differently. Antivirus scanners
can detect a sequence of bytes identifying a specific decryption scheme.

Polymorphic viruses permute continuously to avoid detection by
antivirus scanning[7]. The earliest polymorphic virus might have been a
virus found in Europe in 1989. This virus replicated by inserting a
pseudorandom number of extra bytes into the decryption algorithm,
preventing any common sequence of more than a few bytes between
two successive infections. Polymorphism became practical when a well-
known hacker, Dark Avenger, developed a user-friendly Mutation
Engine program to provide any virus with variable encryption. With a
static signature so small, the risk of false positives by antivirus scanners
became very high. Other hackers soon followed with their own versions
of so-called mutation engines. The 1995 Pathogen and Queeg viruses
were polymorphic DOS file-infecting viruses produced by Black Baron’s
Simulated Metamorphic Encryption enGine (SMEG)[7].

Blended Attacks
The famous 1988 Morris worm was the first to use a combination of
attacks (or blended attacks) to spread quickly to 6000 UNIX computers
in a few hours (10 percent of the Internet at that time)[8].

• It captured the password file and ran a password-guessing program
on it using a dictionary of common words.

• It exploited the debug option in the UNIX sendmail program, allow-
ing it to transfer a copy of itself.

• It carried out a buffer overflow attack through a vulnerability in the
UNIX fingerd program.

In May 2001, the Sadmind/IIS worm spread by targeting two separate
vulnerabilities on two different operating systems. It first exploited a
buffer overflow vulnerability in Sun Solaris systems and installed soft-
ware to carry out an attack to compromise Microsoft Internet
Information Services (IIS) Web servers.

The July 2001 Sircam worm uses two ways to propagate. First, it e-
mails itself as an attachment using its own SMTP engine, and if the
attachment is executed, e-mails a copy of itself to addresses found in the
Windows address book. Second, it spreads by infection of unprotected
network shares.

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 7

In September 2001, Nimda raised new alarms by using five different
ways to spread to 450,000 hosts within the first 12 hours[9]. Nimda
seemed to signal a new level of worm sophistication.

• It found e-mail addresses from the computer Web cache and default
Messaging Application Programming Interface (MAPI) mailbox. It
sent itself by e-mail with random subjects and an attachment named
readme.exe . If the target system supported the automatic execution
of embedded MIME types, the attached worm would be automati-
cally executed and infect the target.

• It infected Microsoft IIS Web servers, selected at random, through a
buffer overflow attack called a unicode Web traversal exploit.

• It copied itself across open network shares. On an infected server, the
worm wrote Multipurpose Internet Mail Extensions (MIME)-en-
coded copies of itself to every directory, including network shares.

• It added JavaScript to Web pages to infect any Web browsers going
to that Website.

• It looked for backdoors left by previous Code Red II and Sadmind
worms.

Armoring
In November 2002, the Winevar worm was an example of an
“armored” worm that contained special code designed to disable
antivirus software using a list of keywords to scan memory to recognize
and stop antivirus processes and scan hard drives to delete associated
files[10].

Klez and Bugbear are recent examples of worms that attack antivirus
software by stopping active processes and deleting registry keys and
database files used by popular antivirus programs. The 2003 Fizzer and
Lirva worms also attempt to disable antivirus software.

Dynamic Software Updates
In October 2000, the Hybris worm propagated as an e-mail attach-
ment[11]. It connected to the alt.comp.virus newsgroup to receive
encrypted plug-ins (code updates). The method is sophisticated and
potentially very dangerous, because the worm payload (destructive
capability) can be modified dynamically.

The 2003 Lirva worm attempted to connect to a Website on
web.host.kz to download BackOrifice, a notorious remote-access
software package that gives complete control to a remote attacker. It
also attempted to download another unknown file that was not found
on the Website.

This technique was given an interesting twist by the Welchia or Nachi
worm, which began spreading on August 18, 2003, soon after the
Blaster worm. Apparently, its creator intended Welchia as a “good”
worm to remove Blaster. It attempted to download and install a fix for
Blaster from a Microsoft Website.

Viruses and Worms: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 8

New Infection Vectors
The Linux Slapper worm, appearing in September 2002, was among
the first to exploit peer-to-peer (P2P) technology[12]. It spread to Linux
computers by exploiting the long Secure Sockets Layer 2 (SSL2) key
argument buffer overflow in the libssl library, used by the mod_ssl
module of the Apache 1.3 Web server. When the worm infects a new
machine, it binds to User Datagram Protocol (UDP) port 2002 and
becomes part of a P2P network. The parent of the worm on the
attacking machine sends to its offspring the list of all hosts on the P2P
network and broadcasts the address of the new worm on the network.
Then periodic updates to the host list are exchanged between machines
on the network. The new worm also scans the network for other
vulnerable machines, sweeping randomly chosen class B networks.

In March 2003, the AimVen worm spread by the America OnLine
Instant Messager (AIM) by modifying the AIM program. Whenever an
.EXE file is sent through AIM, the worm overwrites the file with a copy
of itself.

The Fizzer worm discovered in May 2003 is a mass e-mailer that
includes its own SMTP engine like Klez and Bugbear. It also tries to
spread via KaZaa, a popular P2P file-sharing application, and shared
directories.

The 2003 Lirva worm, named after the singer, Avril Lavigne, is a mass
e-mailer taking advantage of the same MIME header exploit as
Badtrans and Klez, but also tries to spread by IRC, “I seek You” (ICQ),
KaZaa, and open network shares[13].

Data-Stealing Payloads
Most fast-spreading worms in the past have not carried destructive
payloads. Instead, they have tended to appear to be proof-of-concepts
to demonstrate a particular security weakness. Some worms, though,
such as Code Red, have installed Denial-of-Service (DoS) agents or
backdoors on infected machines. Recently worms have begun to carry
keyloggers and password-stealing Trojans in their payloads.

The 2003 Fizzer worm includes a keystroke logging Trojan horse that
stores the data in an encrypted file. It establishes its own accounts on
IRC and AIM to wait for instructions from the virus writer, who could
conceivably fetch the keystrokes data.

The 2003 Lirva worm e-mails cached Windows dialup networking
passwords to the virus writer, and e-mail random .TXT and .DOC files
to various addresses.

Bugbear installs a keystroke logging tool into the Windows System
folder that e-mails the keystrokes data to preprogrammed addresses[14].
It listens on port 36794 for commands from a remote hacker.

T h e I n t e r n e t P r o t o c o l J o u r n a l
2 9

Fast and Furious Worms
A particularly worrisome new trend is extremely fast worms targeted to
specific (usually Windows-related) vulnerabilities that might saturate
their target population within a few hours or even less than an hour.
These worms tend to be simpler and targeted to single rather than
multiple vulnerabilities, in order to be highly efficient in their probing
for other vulnerable machines.

The first example might be the Code Red worm, which actually
appeared in three different versions[15]. The first version of Code Red I
appeared on July 12, 2001, targeted to a buffer overflow vulnerability
in Microsoft IIS Web servers. However, a programming error in its
pseudorandom address generator caused each worm copy to probe the
same set of IP addresses and prevented the worm from spreading
quickly. A week later on July 19, a second version of Code Red I with
the programming error apparently fixed was able to infect more than
359,000 servers within 14 hours. At its peak, the worm was infecting
2000 hosts every minute. A more complex and dangerous Code Red II
targeted to the same IIS vulnerability appeared on August 4.

More recently, the Structured Query Language (SQL) Sapphire/
Slammer worm appeared on January 25, 2003, targeted to Microsoft
SQL Server machines not running Service Pack 3 (SP3), such as SQL
Server 2000 and Microsoft Desktop Engine (MSDE) 2000[16]. It
reportedly infected 90 percent of vulnerable hosts within 10 minutes
(about 120,000 servers)[17]. The spreading rate was surprisingly fast and
resulted in DoS effects (network outages and high packet loss) due to
traffic overloading servers and routers. In the first minute, the infection
doubled every 8.5 seconds, and hit a peak scanning rate of 55,000,000
scans per second after only 3 minutes. In comparison, Code Red
infection doubled in 37 minutes (slower but infected more machines).
Slammer was able to spread so quickly because it appeared to be
designed simply for efficient replication. The worm carried no payload
and consisted of a single 404-byte UDP packet (including 376 bytes for
the worm) that could be sent without having to wait for responses from
targeted machines. In contrast, Code Red was about 4000 bytes and
Nimda was 60,000 bytes, and their scanning depended on the time to
establish TCP connections to targeted machines. The Slammer worm
was much more efficient, simply generating copies of itself at the full
rate of the infected machine.

Latest Developments
The week of August 12–19, 2003, has been called the worst week for
worms in history, seeing MS Blaster, Welchia (or Nachi), and Sobig.F in
quick succession. MS Blaster or LovSan was another fast worm, which
appeared on August 12, 2003, targeted to a Windows Distributed
Component Object Model (DCOM) Remote Procedure Call (RPC)
vulnerability announced on July 16, 2003[18]. The worm probes for a
DCOM interface with RPC listening on TCP port 135 on Windows XP
and Windows 2000 PCs. Through a buffer overflow attack, the worm
causes the target machine to start a remote shell on port 4444 and send
a notification to the attacking machine on UDP port 69.

Viruses and Worms: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
3 0

A Trivial File Transfer Protocol (TFTP) “get” command is then sent to
port 4444, causing the target machine to fetch a copy of the worm as
the file MSBLAST.EXE. In addition to a message against Microsoft, the
worm payload carries a DoS agent (using TCP SYN flood) targeted to
the Microsoft Website windowsupdate.com on August 16, 2003.
Although Blaster has reportedly infected about 400,000 systems, experts
reported that the worm did not achieve near its potential spreading rate
because of novice programming.

Six days later on August 18, 2003, the apparently well-intended
Welchia or Nachi worm spread by exploiting the same RPC DCOM
vulnerability as Blaster. It attempted to remove Blaster from infected
computers and download a security patch from a Microsoft Website to
repair the RPC DCOM vulnerability. Unfortunately, its scanning
resulted in a DoS effect on some networks, such as Air Canada’s check-
in system and the U.S. Navy and Marine Corps computers.

The very fast Sobig.F worm appeared on the next day, August 19,
2003, only seven days after Blaster[19]. The original Sobig.A version was
discovered in January 2003, and apparently underwent a series of
revisions until the most successful Sobig.F variant. Similar to earlier
variants, Sobig.F spreads among Windows machines by e-mail with
various subject lines and attachment names, using its own SMTP
engine. The worm size is about 73 kilobytes with a few bytes of garbage
attached to the end to evade antivirus scanners. It works well because it
grabs e-mail addresses from a variety of different types of files on the
infected computer and secretly e-mails itself to all of them, pretending to
be sent from one of the addresses. At its peak, Sobig.F accounted for 1
in every 17 messages, and reportedly produced over 1 million copies of
itself within the first 24 hours. Interestingly, the worm was programmed
to stop spreading on September 10, 2003, suggesting that the worm
was intended as a proof-of-concept. This is supported by the absence of
a destructive payload, although the worm is programmed with the
capability to download and execute arbitrary files to infected com-
puters. The downloading is triggered on specific times and weekdays,
which are obtained via one of several Network Time Protocol (NTP)
servers. The worm sends a UDP probe to port 8998 on one of several
preprogrammed servers, which responds with a URL for the worm to
download. The worm also starts to listen on UDP ports 995–999 for
incoming messages, presumably instructions from the creator.

Conclusions
Why does the Internet remain vulnerable to large-scale worm out-
breaks? Since at least 1983, the Internet community has understood the
risks and mechanics of viruses. The 1988 Morris worm taught the com-
munity to be watchful for potentially dangerous worms. Over the years,
a variety of antivirus software, firewalls, intrusion detection systems,
and other security equipment have been installed. Moreover, the Com-
puter Emergency Response Team (CERT) at CMU was established as
the first computer security incident response team, which later joined an
expansive global coalition of security incident response teams called the
Forum of Incident Response and Security Teams (FIRST)[20].

T h e I n t e r n e t P r o t o c o l J o u r n a l
3 1

Despite our knowledge and infrastructure defenses, many viruses and
worms have broken out regularly in the Internet over the years. By
some reports, 5 to 15 new viruses and worms are released every day,
although a fraction of that number are not released in the wild and
most do not spread well. Still, fast-spreading viruses and worms con-
tinue to appear with regularity. Outbreaks have become so common-
place that most organizations have come to view them as a routine cost
of operation.

The problem is sometimes portrayed as a perpetual struggle between
virus writers who keep innovating (as described here) and the antivirus
industry, which tries to keep up. However, the problem is actually
larger, involving the entire computer industry. Viruses and worms are
successful because computers have security vulnerabilities that can be
exploited. Clearly, the Internet itself is simply serving its purpose of
interconnecting computer systems. The security vulnerabilities exist in
the host end systems. Security vulnerabilities continue to exist for many
reasons. First, software is often written in an unsecure manner, for
example, vulnerable to buffer overflow attacks that are commonly used
by worms. Buffer overflow attacks have been widely known since 1995,
but this type of vulnerability continues to be found very often (on every
operating system.) Second, when vulnerabilities are announced with
corresponding software patches, many people are slow to apply patches
to their computer for various practical reasons. Weakly protected
computers can be compromised, putting the entire community at risk,
including secured computers that can still be impacted by the traffic
effects of a worm outbreak.

However, there is reason to be hopeful for a solution. Fortunately,
worms typically have a weakness of exploiting vulnerabilities that have
been known for some time. Worm writers do not invent new exploits
for the simple reason that they want to ensure that their worm will
spread after it is released. For example, the Code Red I worm took
advantage of a buffer overflow vulnerability in Microsoft IIS servers
that had been known for a month. The Nimda worm exploited a
unicode Web traversal vulnerability in Microsoft IIS servers that was
published a year earlier. The SQL Slammer/Sapphire worm exploited a
buffer overflow vulnerability in Microsoft SQL servers that had been
known for six months. The recent Blaster worm exploited a Windows
DCOM RPC vulnerability announced two months earlier. Watching
for probing activity attempting to exploit known vulnerabilities could
help detect and block worm outbreaks at an early stage. Ideas for
automatic detection and quarantine of new epidemics is attracting
research[21].

Aside from technological considerations, an important issue is account-
ability. The most obvious parties to hold liable are the virus creators,
but it has been observed many times that few virus writers have been
prosecuted, and sentences have tended to be light. The author of the
1988 Internet worm, Robert Morris, was sentenced to three years of
probation, 400 hours of community service, and a $10,000 fine.

Viruses and Worms: continued

T h e I n t e r n e t P r o t o c o l J o u r n a l
3 2

Chen Ing-hau was arrested in Taiwan for the 1998 Chernobyl virus, but
he was released when no official complaint was filed. Onel de Guzman
was arrested for writing the 2000 LoveLetter virus, which resulted in
$7 billion of damages, but he was released because of the lack of
relevant laws in the Philippines. Jan De Wit was sentenced for the 2001
Anna Kournikova virus to 150 hours of community service. David L.
Smith, creator of the 1999 Melissa that caused at least $80 million of
damages, was sentenced to 20 months of custodial service and a $7500
fine.

It is notoriously difficult to trace a virus or worm to its creator from
analysis of the code, unless inadvertent clues are left in the code. In
addition, cases are difficult to prosecute, and malicious intention (as
opposed to just recklessness) is difficult to prove. Moreover, long prison
sentences have been perceived as overly harsh for arrested virus
creators, who have tended to be teenagers and university students. In
addition, in the absence of a serious legal deterrent, the general
perception persists that virus creators can easily avoid the legal
consequences of their actions. Perhaps to address this problem,
authorities have been diligently investigating the creators of Blaster and
Sobig. So far, a teenager, Jeffrey Lee Parson, has been arrested for
writing the Blaster.B variant, a slight modification of the original
Blaster. Soon afterward, Dan Dumitru Ciobanu was arrested in
Romania for writing the Blaster.F variant.

Some have argued wishfully that software vendors should be held
financially liable for damages resulting from the security vulnerabilities
in their products. The assumption is that accountability would increase
motivation to write and sell more secure software, a solution that
would result in a less inviting environment for viruses and worms. So
far, software vendors have managed to acknowledge their role but
avoid accountability.

References
[1] J. Shoch and J. Hupp, “The ‘worm’ programs—early experience with a

distributed computation,” Communications of ACM, Volume 25, pp.
172–180, March 1982.

[2] A. Kasarda, “The Lion worm: king of the jungle?” SANS reading room,
http://www.sans.org/rr

[3] CERT incident note CA-1999-02, “Happy99.exe trojan horse,”
http://www.cert.org/incident_notes/IN-99-02.html

[4] CERT advisory CA-1999-04, “Melissa macro virus,”
http://www.cert.org/advisories/CA-1999-04.html

[5] CERT advisory CA-1999-06, “ExploreZip trojan horse program,”
http://www.cert.org/advisories/CA-1999-06.html

[6] CERT advisory CA-2000-04, “Love letter worm,”
http://www.cert.org/advisories/CA-2000-04.html

[7] D. Harley, R. Slade, and R. Gattiker, Viruses Revealed, Osborne/
McGraw-Hill, 2001.

T h e I n t e r n e t P r o t o c o l J o u r n a l
3 3

[8] E. Spafford, “The Internet worm program: an analysis,” ACM Computer
Communications Review, Volume 19, pp. 17–57, January 1989.

[9] CERT advisory CA-2001-26, “Nimda worm,”
http://www.cert.org/advisories/CA-2001-26.html

[10] Virus Bulletin, “W32/WineVar,”
http://www.virusbtn.com/resources/viruses/winevar.xml

[11] CERT incident note IN-2001-02, “Open mail relays used to deliver
Hybris worm,”
http://www.cert.org/incident_notes/IN-2001-02.html

[12] F-Secure, “F-Secure virus descriptions: Slapper,”
http://www.f-secure.com/v-descs/slapper.shtml

[13] Symantec Security Response, “W32.lirva.C@mm,”
http://securityresponse.symantec.com/avcenter/venc/data/
w32.lirva.c@mm .htm l

[14] Sophos, “W32/Bugbear-A,”
http://www.sophos.com/virusinfo/analyses/w32bugbeara.html

[15] H. Berghel, “The Code Red worm,” Communications of ACM, Volume
44, pp. 15–19, December 2001.

[16] CERT advisory CA-2003-04, “MS-SQL server worm,”
http://www.cert.org/advisories/CA-2003-04.html

[17] D. Moore, et al., “The spread of the Sapphire/Slammer worm,”
http://www.caida.org/outreach/papers/2003/sapphire/
sapphire.html

[18] CERT advisory CA-2003-20, “W32/Blaster worm,” Aug. 11, 2003,
http://www.cert.org/advisories/CA-2003-20.html

[19] Symantec Security Response, “W32.Sobig.F@mm,”
http://securityresponse.symantec.com/avcenter/venc/data/
w32.sobig.f@mm .html

[20] Forum of Incident Response and Security Teams (FIRST),
http://www.first.org

[21] D. Moore, C. Shannon, G. Voelker, and S. Savage, “Internet quarantine:
requirements for containing self-propagating code,” IEEE Infocom 2003,
San Francisco, April 2003.

THOMAS M. CHEN holds BS and MS degrees in electrical engineering from MIT, and
a PhD in electrical engineering from the University of California, Berkeley. From 1989 to
1997, he worked on ATM networking research at GTE Laboratories (now Verizon). He
is currently an Associate Professor in the Department of Electrical Engineering at SMU in
Dallas, Texas. He is the associate editor-in-chief of IEEE Communications Magazine, a
senior editor of IEEE Network, an associate editor of ACM Transactions on Internet
Technology, and founding editor of IEEE Communications Surveys. He is the coauthor
of ATM Switching Systems (Artech House, 1995). E-mail: tchen@engr.smu.edu

